[av_heading tag=’h2′ padding=’10’ heading=’Working Group 4′ color=” style=” custom_font=” size=” subheading_active=” subheading_size=’15’ custom_class=”][/av_heading]
[av_two_third first min_height=” vertical_alignment=” space=” custom_margin=” margin=’0px’ padding=’0px’ border=” border_color=” radius=’0px’ background_color=” src=” background_position=’top left’ background_repeat=’no-repeat’ animation=”]
[av_textblock size=” font_color=” color=”]
The working group 4 (WG4) of this COST Action is focused on the investigation of cooperative effects, correlations, and many-body physics tailored by strongly confined fields in nanophotonic and plasmonic systems. Topics include:
Photonic Quantum Simulation: engineering strongly coupled photonic many-body systems,
analytic and numerical techniques for treating driven-dissipative many-body systems, plasmonic and nanophotonic lattices, …
Atom-Light Interactions in 1D: superradiance and self-ordering in 1D, efficient coupling of atoms, molecules, defect centers and quantum dots to plasmonic and photonic waveguides, physics of epsilon-near-zero (ENZ) and chiral waveguides, …
[/av_textblock]
[/av_two_third]
[av_one_third min_height=” vertical_alignment=” space=” custom_margin=” margin=’0px’ padding=’0px’ border=” border_color=” radius=’0px’ background_color=” src=” background_position=’top left’ background_repeat=’no-repeat’ animation=”]
[av_icon_box position=’top’ boxed=” icon=’ue80a’ font=’entypo-fontello’ title=” link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]
Peter Rabl
WG4 Leader
[/av_icon_box]
[/av_one_third]
[av_textblock size=” font_color=” color=”]
Collective Effects & Phase Transitions: Dicke and self-organization phase transitions, cavity QED with atomic or spin ensembles, strong and ultra-strong coupling effects in cavity QED, …
Quantum Plasmonics: strong plasmonic nonlinearities, plasmonic lattices and graphene plasmonics, efficient molecule-plasmon coupling and energy transfer, quantum statistics of plasmonic excitations, …
Nano-Optomechanics: strong coupling optomechanics in nano-OM systems, OM generation of nonclassical states and entanglement for photons and phonons, graphene-based OM systems, …
The goal of WG4 is to connect theorists and experimental researchers working at the interface between quantum optics and many-body physics and to stimulate interdisciplinary collaborations through meetings, training schools and short term scientific missions (STSM).
[/av_textblock]
[av_one_full first min_height=” vertical_alignment=” space=” custom_margin=” margin=’0px’ padding=’0px’ border=” border_color=” radius=’0px’ background_color=” src=” background_position=’top left’ background_repeat=’no-repeat’ animation=”]
[av_table purpose=’tabular’ pricing_table_design=’avia_pricing_default’ pricing_hidden_cells=” caption=’WG4 Matrix’ responsive_styling=’avia_responsive_table’]
[av_row row_style=’avia-heading-row’][av_cell col_style=”]Objective[/av_cell][av_cell col_style=”]Photonic Quantum Simulation
[/av_cell][/av_row]
[av_row row_style=”][av_cell col_style=”]Theoretical
approaches
[/av_cell][av_cell col_style=”] – schemes for engineering strongly coupled photonic many-body systems,effective gauge fields, non-trivial topologies
– new numerical methods for driven-dissipative many-body systems: MPS (1D), corner-space renormalization (2D)
– ultrastrong coupling theory for atom-waveguide systems
– theory of plasmonic condensates[/av_cell][/av_row]
[av_row row_style=”][av_cell col_style=”]Experimental
approaches
[/av_cell][av_cell col_style=”]- plasmonic lattice systems[/av_cell][/av_row]
[av_row row_style=”][av_cell col_style=”]Goals
[/av_cell][av_cell col_style=”]- optimized / flexible numerical methods for open quantum many-body systems
– optical/plasmonic lattice systems with non-linearities exceeding losses [/av_cell][/av_row]
[av_row row_style=’avia-heading-row’][av_cell col_style=”]Objective[/av_cell][av_cell col_style=”]Atom-Light Interactions in 1D[/av_cell][/av_row]
[av_row row_style=”][av_cell col_style=”]Theoretical
approaches [/av_cell][av_cell col_style=”]- theory of self-ordering in driven 1 D atom-waveguide systems
– new proposal for superradiance/correlated decay between SiV centres in diamond waveguides
– realistic predictions for photon transport in slow-light waveguides
– strong light-matter interactions in slow-light waveguides
[/av_cell][/av_row]
[av_row row_style=”][av_cell col_style=”]Experimental
approaches[/av_cell][av_cell col_style=”]-QD-pillar systems and free-space lensing for efficient emitter-photon coupling
– design of chiral photonic crystal waveguides with unidirectional coupling
– epsilon-near-zero (ENZ) medium for unconventional (position independent) dipole-dipole interactions
– bright single molecule emitters and SiV
– long-distance coupling of two separated quantum dots in 2D photonic crystal structures[/av_cell][/av_row]
[av_row row_style=”][av_cell col_style=”]Goals[/av_cell][av_cell col_style=”]- combining chiral or ENZ waveguides with QDs or other emitters
– coupling of molecules to hybrid (plasmonic/dielectric)waveguides [/av_cell][/av_row]
[av_row row_style=’avia-heading-row’][av_cell col_style=”]Objective[/av_cell][av_cell col_style=”]Collective Effects & Phase Transitions[/av_cell][/av_row]
[av_row row_style=”][av_cell col_style=”]Theoretical
approaches[/av_cell][av_cell col_style=”]- Dicke phase transition and self-organization in cavatiy QED, relaxation dynamics and prethermalization
– QPT and universal dynamics in the single atom Rabi model
– cavity protection effects and decoherence control of atomic/spin ensemble quantum memories
– Green’s tensor approach to model superradiance of many random emitters coupled to plasmonic resonances
– hydrodynamical models for quantum plasmas in semiconductors [/av_cell][/av_row]
[av_row row_style=”][av_cell col_style=”]Experimental
approaches[/av_cell][av_cell col_style=”][/av_cell][/av_row]
[av_row row_style=”][av_cell col_style=”]Goals[/av_cell][av_cell col_style=”]- super-radiation and control of coherence with ENZ mediums[/av_cell][/av_row]
[av_row row_style=”][av_cell col_style=”][/av_cell][av_cell col_style=”][/av_cell][/av_row]
[av_row row_style=’avia-heading-row’][av_cell col_style=”]Objective[/av_cell][av_cell col_style=”]Quantum Plasmonics[/av_cell][/av_row]
[av_row row_style=”][av_cell col_style=”]Theoretical
approaches[/av_cell][av_cell col_style=”]- non-linear effects in organic “plasmonics”
– exciton compensation of Coulomb blocking the current through conduction nanjunctions
– modeling of plasmons in nano-graphene sheets
– pseudoparticle nonequilibrium Green function formalism for exact treating the coupling between plasmons and excitons[/av_cell][/av_row]
[av_row row_style=”][av_cell col_style=”]Experimental
approaches[/av_cell][av_cell col_style=”]- plasmon induced non-linearities in nanostructured graphene
– plasmonic lattices
– demonstration of particle-wave duality for plasmons
– strong coupling between SPP and molecules – plasmon chemistry
– plasmon assisted energy transfer[/av_cell][/av_row]
[av_row row_style=”][av_cell col_style=”]Goals[/av_cell][av_cell col_style=”]- increase life plasmon lifetime
– enhanced plasmonic non-linearites using near-field effects[/av_cell][/av_row]
[av_row row_style=’avia-heading-row’][av_cell col_style=”]Objective[/av_cell][av_cell col_style=”]Nano-Optomechanics[/av_cell][/av_row]
[av_row row_style=”][av_cell col_style=”]Theoretical
approaches[/av_cell][av_cell col_style=”]- conditioned preparation of non-classical mechanical states and entanglement for weakly coupled OM systems
– modeling of mechanical properties of carbon nanotubes[/av_cell][/av_row]
[av_row row_style=”][av_cell col_style=”]Experimental
approaches[/av_cell][av_cell col_style=”]- Near-field dissipative coupling of graphene resonators to single emitters[/av_cell][/av_row]
[av_row row_style=”][av_cell col_style=”]Goals[/av_cell][av_cell col_style=”]- demonstrate coherent near-field optomechanical coupling with graphene[/av_cell][/av_row]
[/av_table]
[/av_one_full]