Working Group 3

[av_heading tag=’h2′ padding=’10’ heading=’Working Group 3′ color=” style=” custom_font=” size=” subheading_active=” subheading_size=’15’ custom_class=”][/av_heading]

[av_two_third first min_height=” vertical_alignment=” space=” custom_margin=” margin=’0px’ padding=’0px’ border=” border_color=” radius=’0px’ background_color=” src=” background_position=’top left’ background_repeat=’no-repeat’ animation=”]

[av_textblock size=” font_color=” color=”]
Quantum coherence phenomena such as entanglement lie at the heart of quantum science and technology and they represent the basis, for instance, for quantum information & computation, quantum metrology and energy transfer in light-harvesting complexes.

The goal of the WG3 is to explore manifestations of quantum coherence at the nanoscale. Due to its fundamental and very general nature, this topic is transverse to the topics of the other work groups, and presents substantial overlaps with them (e.g. colour centres, plasmons, quantum dots, nanoresonators and so on are tools investigated in other work groups too).
[/av_textblock]

[/av_two_third][av_one_third min_height=” vertical_alignment=” space=” custom_margin=” margin=’0px’ padding=’0px’ border=” border_color=” radius=’0px’ background_color=” src=” background_position=’top left’ background_repeat=’no-repeat’ animation=”]
[av_icon_box position=’top’ boxed=” icon=’ue80a’ font=’entypo-fontello’ title=” link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]

Thomas Durt

WG3 Leader


[/av_icon_box]
[/av_one_third]

[av_one_full first min_height=” vertical_alignment=” space=” custom_margin=” margin=’0px’ padding=’0px’ border=” border_color=” radius=’0px’ background_color=” src=” background_position=’top left’ background_repeat=’no-repeat’ animation=”]
[av_table purpose=’tabular’ pricing_table_design=’avia_pricing_default’ pricing_hidden_cells=” caption=’Matrix WG3′ responsive_styling=’avia_scrollable_table’]
[av_row row_style=’avia-heading-row’][av_cell col_style=”]Topics[/av_cell][av_cell col_style=”]Quantum coherence &
dephasing as a sensing
tool [/av_cell][av_cell col_style=”]Coherent quantum
transport for energy
harvesting [/av_cell][av_cell col_style=”]Fundamental aspects of
quantum coherence at
the nanoscale [/av_cell][/av_row]
[av_row row_style=”][av_cell col_style=”]MATERIALS &
SYSTEMS [/av_cell][av_cell col_style=”]Colour centres in
nanoscale diamond and
silicon carbide
Nanoplasmonics
Nanofabrication &
synthesis [/av_cell][av_cell col_style=”]Light harvesting
complexes (natural,
synthetic)
Disordered photonic
structures
Nanoplasmonics
Nanofabrication &
synthesis [/av_cell][av_cell col_style=”]Molecules, QDs, Color
Centers
Spin Chains
Nanoresonators, Beads [/av_cell][/av_row]
[av_row row_style=”][av_cell col_style=”]THEORY & MODELS [/av_cell][av_cell col_style=”]Ab-initio methods
Interface effects
Model Hamiltonians
Protocols for sensing,
imaging, etc[/av_cell][av_cell col_style=”]Open quantum systems
Computational chemistry,
DFT
Spin Hamiltonians [/av_cell][av_cell col_style=”]Master equation
Ab-initio methods
Exact diagonalization
techniques
Spin-chain Hamiltonians
Quantum classical
transition [/av_cell][/av_row]
[av_row row_style=”][av_cell col_style=”]EXPERIMENTS [/av_cell][av_cell col_style=”]Scanning probe
techniques
Superresolution imaging
Microwave techniques
Optical detection and
precision measurements[/av_cell][av_cell col_style=”]Ultrafast and 2D
spectroscopy
Spectroscopy of single
emitters
Spectroscopy of
nanoantennas
Scanning probe
techniques [/av_cell][av_cell col_style=”]Spectroscopy of single
emitters
Nano-optical tweezers [/av_cell][/av_row]
[/av_table]
[/av_one_full]