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Atom-Photon Interactions

A Single Atom 
Ultimate non-linear optical element

Spontaneous Emission into undesired directions is a fundamental 
limitation: Source of (quantum) information loss
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Single Photon Storage

Spin Squeezing

Error decreases as 1 / OD or slower
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Linear scaling of optical depth with atom number 
ignores Wave Interference

subradiance
suppression of decay rate

rich and engineerable emission pattern into 4



Formalism for Atom-Light interactions including 
Wave Interference

field created by a single 
dipole is given by  
Green’s function
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are guided

A single layer of atoms ordered 
in a sub-wavelength array 

behaves as a perfect mirror 
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No Photon Losses 
Perfect Reflection Efficient Atom-Light Interface
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Exponential Improvement  
vs. Atom Number
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We can use such effects to create a 
nearly perfect quantum memory

Optimization of photon storage fidelity in ordered atomic arrays
M. T. Manzoni, M. Moreno-Cardoner, A. Asenjo-Garcia, J. V. Porto, A. V. Gorshkov, and D. E. Chang, 

New Journal of Physics, 20, 083048 (2018)  

A small array of 4 x 4 atoms can be as efficient 
as a disordered ensemble with N = 106~107

Less than 1% error for a 4 x 4 array!
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We can use such effects for an 
efficient transport of excitations

Extraordinary subradiance with lossless excitation transfer in 
dipole-coupled nano-rings of quantum emitters

M. Moreno-Cardoner, D. Plankensteiner, L. Ostermann, D. E. Chang, H. Ritsch, arXiv:1901.10598  

two rings in a 
subradiant mode 

couple mainly 
dispersively
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We can use such effects for an 
efficient transport of excitations

Extraordinary subradiance with lossless excitation transfer in 
dipole-coupled nano-rings of quantum emitters

M. Moreno-Cardoner, D. Plankensteiner, L. Ostermann, D. E. Chang, H. Ritsch, arXiv:1901.10598  

fidelities near unity of  
multi-mode excitation transfer
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• Novel phenomena, More powerful protocols?

metrology
quantum memories

quantum gates

many-body physics

non-linear optics

collective effects 
in ordered arrays ?

independent 
emission 
models
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