WG3 – Nanoscale Quantum Coherence | TOPICS | Quantum coherence & dephasing as a sensing tool | Coherent quantum transport for energy harvesting | Fundamental aspects of quantum coherence at the nanoscale | |---------------------|---|---|---| | MATERIALS & SYSTEMS | Colour centres in nanoscale diamond and silicon carbide Nanoplasmonics Nanofabrication & synthesis | Light harvesting complexes (natural, synthetic) Disordered photonic structures Nanoplasmonics Nanofabrication & synthesis | Molecules, QDs, Color
Centers
Spin Chains
Nanoresonators, Beads | | THEORY & MODELS | Ab-initio methods Interface effects Model Hamiltonians Protocols for sensing, imaging, etc | Open quantum systems
Computational chemistry,
DFT
Spin Hamiltonians | Master equation Ab-initio methods Exact diagonalization techniques Spin-chain Hamiltonians Quantum classical transition | | EXPERIMENTS | Scanning probe techniques Superresolution imaging Microwave techniques Optical detection and precision measurements | Ultrafast and 2D spectroscopy Spectroscopy of single emitters Spectroscopy of nanoantennas Scanning probe techniques | Spectroscopy of single
emitters
Nano-optical tweezers | ## WG1 - Generation, detection and storage of quantum states of light | Topics | Superconducting detectors physics and performance | Sources | Processing/memories/
interfaces/applications | |---------------------|---|---|--| | MATERIALS & SYSTEMS | Superconducting nanowire single-photon detectors (meanders, nanodetectors) NbN, NbTiN, WSi, MoSi, YBCO Alternative substrates Nano-fabrication Waveguide detectors | Semiconductor quantum dots Organic molecules SPDC/SFWM Color centres in diamond Rare earth ion doped crystals Trapped atoms Electrical pumping of quantum dots | - Tapered optical fibers with a nanofiber waist and >99% transmission - Tunable Whispering- Gallery-Mode (WGM) resonators with Q > 10e8 - Nonlinear waveguides (PPLN, PPKTP) | | THEORY & MODELS | Superconductivity in nanostructures Finite difference time-domain simulation Numerical simulations of the detection mechanism Conventional and non-conventional superconductors | Finite difference time-domain simulation Optical Bloch equations Jaynes-Cummings models Density functional theory Fermi's Golden Rule calculations Density matrix approach for coupling with reservoir | Semi-classical description of (arrays of) multi-level atoms with optical nearfields Full quantum description of the interaction of multi-level atoms with WGM resonator modes | | EXPERIMENTS | Multi-photon excitations Optical, electrical, temperature & magnetic field studies at < 1 K High-temperature operation Multilayers and novel geometries | Confocal microscopy Correlation function measurements Quantum interference Low-temperature experiments Spectral and spatial modes control Electrical pumping | Coupling of sources to waveguide devices, open microcavities and nanocavities Cold cesium atoms trapped and interfaced via nanofiber-guided light CQED with single Rubidium atoms coupled to WGM resonators Frequency conversion Interfacing rare-earth-ion doped quantum memories with single-photon sources Quantum random number generation with nanoscale devices Feasibility of free-space/satellite QKD with nanoscale sources and detectors |